

Table of Contents

	Introduction
	Installation
	From PyPI

	From source

	Basic Tutorial

	How-To Guides
	Blogging site

	Create your own extension
	Available events to register to

	Empty extension

	Adding functionality

	Making the extension configurable

	Extensions
	taika.ext.collections – Grouping content
	Event

	Process

	Configuration

	Classes and Functions

	taika.ext.excerpt – Documents excerpts
	Event

	Frontmatter

	Configuration

	Process

	Classes and Functions

	taika.ext.layouts – Jinja layouts
	Event

	Payload

	Frontmatter

	Configuration

	Default filters

	Process

	Classes and Functions

	taika.ext.markdown – Markdown
	Trigger

	Frontmatter

	Process

	Configuration

	Functions

	taika.ext.rst – ReStructuredText
	Trigger

	Frontmatter

	Process

	Configuration

	Functions

	Internals
	Contributing to Taika
	Types of Contributions

	Get Started!

	Merge Request Guidelines

	Tips and tricks with pytest

	Reference
	Document specification

	Configuration file

	taika

	taika.cli

	taika.events – Basic event managment

	taika.taika

	History
	Unreleased
	Added

	Changed

	v0.6.0 (2019-06-22)
	Changed

	v0.5.3 (2019-06-13)
	Fixed

	Removed

	v0.5.2 (2019-05-11)
	Fixed

	Added

	v0.5.1 (2018-04-16)
	Changed

	v0.5.0 (2018-04-16)
	Added

	Changed

	Fixed

	v0.4.0 (2018-03-17)
	Added

	Removed

	v0.3.0 (2018-03-15)

	v0.2.1 (2018-03-15)
	Added

	Removed

	v0.2.0 (2018-03-15)
	Added

	0.1.X (YYYY-MM-DD)

Indices and tables

	Index

	Module Index

	Search Page

Taika Documentation

Taika is a simple Static Content Generator, it can be a simple files processor or can be
more complex, if extensions are used. It aims to be simple and extensible, so if a user
needs more functionality can add it via extensions.

You want a full overview of the documentation? Take a look at the Table of Contents.

Getting started

	Installation

	Basic Tutorial

How-To Guides

Take a look at our Guides to build more complex things with Taika.

Extensions

Add more functionality to your site with extensions!

Check the builtin extensions. Here are a few of them:

	taika.ext.layouts – Jinja layouts

	taika.ext.rst – ReStructuredText

	taika.ext.collections – Grouping content

Or they don’t fit your needs, create your own extension.

API reference

Check the configuration reference.

How Taika works? Take a look at the Reference.

Taika itself

How is Taika managed and how you can contribute to it.

Contributing to Taika

Introduction

Take a look here if you are a newcomer!

	Installation
	From PyPI

	From source

	Basic Tutorial

Installation

From PyPI

To install Taika, run in your terminal:

pip install taika

You will get the last release available from the PyPI.

From source

The sources for Taika can be downloaded from the GitLab repo [https://gitlab.com/hectormartinez/taika].

Cloning using git:

git clone git://gitlab.com/hectormartinez/taika.git

Or downloading a tar:

curl -OL https://gitlab.com/hectormartinez/taika/repository/master/archive.tar
pip install archive.tar

Once you have a copy of the source, you can install it with:

cd taika
pip install .

Basic Tutorial

Create a directory with files:

mkdir source
touch source/index.txt
touch source/contents.rst
touch source/first-post.md
touch source/taika.yml

And run the taika command:

taika source /tmp/taika/
ls /tmp/taika/

Taika will get your files from source and will process and write them into /tmp/taika:

contents.rst first-post.md index.txt taika.yml

The extensions that you load into Taika will modify those files and probably will have
different extensions, new content, etc. Take a look at the extensions.

How-To Guides

Here you will find recipes to do things with Taika!

	Blogging site

	Create your own extension
	Available events to register to

	Empty extension

	Adding functionality

	Making the extension configurable

Blogging site

With taika you can setup a little static blog as you can do it with Jekyll, Hugo, Pelican
or others. You should add a few extensions and options to your taika.yml configuration.

title: Hector Martinez-Lopez
subtitle: Scientific Software Developer
url: https://hectormartinez.gitlab.io
extensions:
 - taika.ext.rst
 - taika.ext.collections
 - taika.ext.layouts
 - taika.ext.excerpt

assets:
 source: assets
 destination: assets

collections:
 posts:
 pattern: "posts/(?!index.rst).*"

layouts_pattern: '*.rst'
layouts_options:
 autoescape: False
 lstrip_blocks: True
 trim_blocks: True

Adding those options, Taika will be able to parse the ‘*.rst’ files into html, aggregate
them into collections, render them using Jinja2 and extract their excerpt. You need to
have a templates/ directory in the working directory so Jinja2 can template your
posts and pages. Check the layouts extension for more detail.

Create your own extension

If you want to create yourself an extension, this is the place. You can take a look at the source
of builtin extensions such as layouts or rst.

Available events to register to

The following are the different events which you can register your extension to.

Note

The arguments that are listed are given as arguments, not keyword_arguments.

	
doc-post-read

	Arguments: site, document

Called after each document read.

	
site-post-read

	Arguments: site

Called after all the documents have been read.

Empty extension

This will be the backbone of your extension, one that does nothing:

def do_nothing(site, document):
 pass

def setup(site):
 pass

Taika will use the setup() as entry point, so you should do your loading there.

Save it as a Python file and place it in the extensions and put it’s path into
extensions_path, so we can find it and load it:

taika.yml
...
extensions_path: /path/to/my_extensions
extensions:
 ...
 - my_extension # <--
 ...
...

Adding functionality

Here, we use as example an extension that will print certain documents. First we print
all the documents:

def print_document(site, document):
 print(document)

def setup(site):
 site.events.register("doc-post-read", print_document)

Note that we are registering our function using site.events.register.

Making the extension configurable

Now we want to print only certain documents, based on the frontmatter keys. But we want to
configure which key is needed to print the documents, so we make our extension to read
site.config.:

def print_document(site, document):
 on_key = site.config.get("print_document_on_key", DEFAULT_KEY)
 if on_key in document:
 print(document)

def setup(site):
 site.events.register("doc-post-read", print_document)

We used the get method on the configuration and we passed our key name and a default
value. Later, we decide that we want to pass a list of keys which will trigger the print.
We modify our extensions as follows:

def print_document(site, document):
 on_keys = site.config.get("print_document_on_keys", DEFAULT_KEYS)
 match = [key in document for key in on_keys]
 if any(match):
 print(document)

def setup(site):
 site.events.register("doc-post-read", print_document)

And that’s all! Be creative!

Extensions

Taika comes with builtin extensions that will help you to develop better your site.

Take a look at the builtin extensions, or create your own!

	taika.ext.collections – Grouping content
	Event

	Process

	Configuration

	Classes and Functions

	taika.ext.excerpt – Documents excerpts
	Event

	Frontmatter

	Configuration

	Process

	Classes and Functions

	taika.ext.layouts – Jinja layouts
	Event

	Payload

	Frontmatter

	Configuration

	Default filters

	Process

	Classes and Functions

	taika.ext.markdown – Markdown
	Trigger

	Frontmatter

	Process

	Configuration

	Functions

	taika.ext.rst – ReStructuredText
	Trigger

	Frontmatter

	Process

	Configuration

	Functions

taika.ext.collections – Grouping content

This extension groups documents using patterns specified by the user. It also order those
documents using certain keys specified by the user.

It uses the patterns listed from top to bottom, the documents not included in the first
pattern are not matched against the second pattern, so be liberal in the first pattern
and more restricted at the bottom. Also, if the pattern starts with ! (exclamation mark)
the documents matching will be excluded. For example:

collections:
posts:
 patterns:
 - "posts/*" # Include all under posts
 - "!posts/index.rst" # Ignore posts/index.rst

Event

This extension is subscribed to the site-post-read event.

Process

	Setup where the collections keys is retrieved.

	When the extension is called, scans the documents checking their path.

	If path matches the patterns provided, it’s added to the collection.

	Finally, the attribute collections is created on taika.Taika.

Configuration

Match all but the index.rst file on posts/
collections:
 posts:
 patterns:
 - "posts/*" # Include all under posts
 - "!posts/index.rst" # Ignore posts/index.rst

	
collections(dict)

	Default: {}

A dictionary where each key specifies the name of the collection.

	
collection.patterns(list)

	Default: [‘’] (empty string)

The patterns to be used in order to group the files. By default, it matches nothing.

Classes and Functions

	
class Collector(config)

	Main class which retrieves the configuration and the organize the documents.

	
organize(self, site)

	Classify the documents and creates the collections attribute on site.

	
match(path, patterns, reverse_character='!')

	

	
setup(site)

	

taika.ext.excerpt – Documents excerpts

This extensions creates a excerpt for the documents based on it’s content.

Event

This extension is subscribed to the “doc-post-read” event.

Frontmatter

	
excerpt_separator(str)

	Use this separator instead of the global separator defined in the configuration.

Configuration

excerpt_separator: <!-- read-more -->

	
excerpt_separator(str)

	Default: None

A string that will be used as excerpt separator. Default to None so no excerpt
will be generated.

Process

	Check for the frontmatter option, otherwise use the global or the default separator.

	If separator is None, the first <p> tag is retrieved if existent.

	If the first <p> tag is not found, \n\n (double line separator) is
used as separator.

	If separator is something, the text before that separator is retrieved if existent.

	The excerpt is inserted into the document so it will be accessible.

Classes and Functions

	
get_excerpt(site, document)

	

	
setup(site)

	

taika.ext.layouts – Jinja layouts

This extension renders documents content trought a the Jinja2 templating engine. It also
renders the content of documents itself if any Jinja block/comment/var is detected.

Event

This extension is subscribed to the site-post-read event.

Payload

When the content and the templates are rendered, certain payload is passed and becomes
accessible by both content and templates. This payload has two main keys: site and
document.

Using document you can access the document attributes being processed, such as the
path, content, etc. Check Document specification for details.

Inside site, the taika.Taika is accessible.

Note

Note that site.config returns a dictionary with all the sections included, so to access
which extensions are listed you should use site.config.taika.extensions. This is a long
“import-like” statement, and probably we will shrink it in the future.

Frontmatter

	
layout(str)

	The layout that should render the document. Should exist under the layouts_path. If None
the documents is not passed throught the template, but its body is still rendered.

Configuration

Note

All configuration hangs from a key in the YML configuration named ‘layouts’.
Inside it, you can add the following options:

	
path(list)

	Default: [./templates/]

A list of paths from where the layouts will be loaded.

	
options(dict)

	Default: {} (empty-dict)

A dictionary (key-value) of options to pass to the Jinja environment when created.

	
default(str)

	Default: index.html

The default layout if the document has no layout defined.

	
patterns(str)

	Default: [“*”]

A list of patterns to match Which files should be renderered. Default to all the files.

Default filters

	
link

	Link against other documents inside your site using
{{ '/posts/2019/my-other-post.md' | link }}. Relative links not supported, only
absolute paths will be accepted.

Process

	(pre-registering) The JinjaRenderer is initialized with the configuration. The Jinja
environment is created and the templates loaded.

	Checks if the path of the document matches layouts_pattern, if not, skips it.

	Composes the layout using the document itself, so the document metadata is available directly.

	If the content has any Jinja flag, it is renderered, so you can include Jinja syntax into the
document text.

	Then the content (rendered or not) is rendered throught the template layout.

	The document’s content is modified.

	Done!

Classes and Functions

	
exception DocumentNotFound

	

	
class JinjaRenderer(config)

	This class holds the Jinja2 environment, removing the need to create it each time.

	Attributes

	
	envjinja2.Environment

	The configured Jinja environment.

	layouts_patternsstr

	The list of patterns which will be used to decide if the document should be processed.

	layouts_defaultstr

	The option so the JinjaRenderer.render_content() can access it.

	
render_content(self, site)

	

	
exception RelativeLinkNotSupported

	

	
link(context, path)

	

	
setup(site)

	

taika.ext.markdown – Markdown

This extension parses the content of the documents into HTML using CommonMarkdown specifications.

Trigger

This extension is subscribed to the “doc-post-read” event.

Frontmatter

None.

Process

	Reads the suffix of path and if it matches, process the document.

	Modifies the suffix of url path to “.html”.

	Process the content with marko.convert and replaces it.

	Done!

Configuration

All configuration hangs from a key in the YML configuration named ‘markdown’.
Inside it, you can add the following options:

	
suffixes(list)

	Default: [.md]

Tells the parser to ONLY modify docs with that suffix. Otherwise the document is ignored.
This is checked against the source path (path), not the destination path (url).

Functions

	
parse(site, document)

	

	
setup(site)

	

taika.ext.rst – ReStructuredText

This extension parses the content of the documents into HTML using ReStructuredText specifications.

Trigger

This extension is subscribed to the “doc-post-read” event.

Frontmatter

None.

Process

	Reads the suffix of path and if it matches, process the document.

	Modifies the suffix of url path to “.html”.

	Process the content with docutils.publish_parts() and replaces it with the “body” part.

	Done!

Configuration

Note

All configuration hangs from a key in the YML configuration named ‘restructuredtext’.
Inside it, you can add the following options:

	
suffixes(list)

	Default: [.rst]

Tells the parser to ONLY modify docs with that suffix. Otherwise the document is ignored.
This is checked against the source path (path), not the destination path (url).

	
strict(bool)

	Default: True

Exits with error code 1 if there is any warning or error when parsing files.

	
options(dict)

	
	Default:

	
{ stylesheet_path: ‘’,

halt_level: 1,

traceback: True,

report_level: 5,

syntax_highlight: ‘short’,

doctitle_xform: False }

You can check the available options at HTML writer documentation [http://docutils.sourceforge.net/docs/user/config.html#html4css1-writer]

Functions

	
parse_rst(site, document)

	Parse content and modify url keys of document.

	Parameters

	
	sitetaika.taika.Taika

	The Taika site.

	documentdict

	The document to be parsed.

	
setup(site)

	

Internals

Take a look here if you want to help improve Taika or want to learn about how Taika is managed.

	Contributing to Taika
	Types of Contributions

	Get Started!

	Merge Request Guidelines

	Tips and tricks with pytest

Contributing to Taika

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Fix Bugs

Look through the issue board [https://gitlab.com/hectormartinez/taika/issues] for issues tagged as “type: bug”.

Implement Features

Look through the issue board [https://gitlab.com/hectormartinez/taika/issues] for issues tagged as “type: feature-request”or
“type: enhancement”.

Write Documentation

Documentation is always welcome, whether as part of the official Taika docs, in docstrings,
or even on the web in blog posts, articles, and such. Don’t be shy and contribute :-D

Submit Feedback

The best way to send feedback is to file an issue at issue board [https://gitlab.com/hectormartinez/taika/issues]. Select the template
that fits your needs and submit it!

Get Started!

Ready to contribute? Here’s how to set up taika for local development.

	Fork the taika repo on GitLab.

	Clone your fork locally:

$ git clone git@gitlab.com:your_name_here/taika.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed,
this is how you set up your fork for local development:

$ mkvirtualenv taika -p python3.6
$ cd taika/
$ python setup.py develop
$ pip install -r requirements.txt
$ pre-commit install

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run tox:

$ tox

	Commit your changes and push your branch to GitLab:

$ git add .
$ git commit
$ git push origin name-of-your-bugfix-or-feature

	Submit a merge request through the GitLab website.

Merge Request Guidelines

Before you submit a merge request, check that it meets these guidelines:

	Tests musts be included.

	Documentation (docstrings or pages) must be included.

	Python 3.6 should be supported.

	The code should be isort’ed and flake8’ed. Optionally pylint’ed.

After you submit a merge request, check regularly the merge request, as
Continuous Integration is run for each of your commits and should pass in order
to merge the request.

Tips and tricks with pytest

Run all the test environments.

$ tox

To run only one environment:

$ tox -e <testenv>

To run a test module:

$ pytest tests/test_module

To run a test function inside a module:

$ pytest tests/test_module.py::test_function

Reference

Take a look here if you want to use Taika’s functions or classes yourself.

	Document specification

	Configuration file

	taika

	taika.cli

	taika.events – Basic event managment

	taika.taika

Document specification

Taika works with a dictionary representation of the documents. The following
keys are defined in the documents when are read by Taika. The document can contain other
keys, but they will be added by extensions:

	
path(pathlib.Path)

	

The path that the file has in the source folder. Shouldn’t be modified.

	
url(pathlib.Path)

	

The path that the file will have in the destination folder. Can be modified.

	
raw_content(bytes)

	

The content that has the file in the source directory. Shouldn’t be modified.

	
content(bytes)

	

The content after splitting the frontmatter from it. Can be modified.

Configuration file

Taika features configuration using YAML files, since their are readable and flexible. Here
you will find the reference for the configuration file.

Warning

Taika reserves to words in the configuration: extensions and extensions_path.
Overriding these two keys in the configuration file can lead to unexpected behaviour.

	
extensions(list)

	A list of extensions to use.

E.g.:

extensions:
 - taika.ext.rst
 - taika.ext.permalinks

	
extensions_paths(list)

	A list of paths where extensions live. This paths will be added to the sys.path in
order to make the extensions inside it discoverable.

E.g.:

extensions_paths:
 - ./extensions
 - ./plugins
 - ./_extensions
 - /.extensions
 - ~/.extensions

taika

The top-level package contain some meta info about the package to be accessible by other tools.

	
__author__(str)

	The author name.

	
__email__(str)

	The email of __author__.

	
__version__(str)

	The version of the package.

	
class Taika(source, destination, conf_path=None)

	Taika main class.

	Attributes

	
	sourcepathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	

	destinationpathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	

	eventstaika.events.EventManager

	

	configdict

	

	documentslist

	

	
import_extensions(self)

	Load the configuration and extensions.

	
process(self)

	Run Taika.read() and Taika.write().

	
read(self, source)

	Read all the files recursively from a source directory and load them as dictionaries.

	Parameters

	
	sourcepathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	The source directory where the documents are read from.

	Returns

	
	documentslist

	A list of dictionaries that represent documents.

	
write(self, documents, destination)

	Call taika.taika.write_file for each document on documents with destination.

	Parameters

	
	documentslist

	A list of dictionaries that represent documents.

	destinationstr or pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	The destination directory.

taika.cli

The entry point for the command line interface of Taika.

	
main(arguments=None)

	The main entry point, parse arguments behaves accordingly.

	Parameters

	
	argumentslist, optional (default=None)

	A list of arguments to be parsed. If None, sys.argv[1:] is used.

	Returns

	
	err_codeint

	Non-zero value indicates error, or zero on success.

	
parse_arguments(arguments)

	Create a argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] and run argparse.ArgumentParser.parse_args() [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.parse_args]
agains arguments.

	Parameters

	
	argumentslist

	A list of arguments to be parsed.

	Returns

	
	namespaceargparse.Namespace

	The namespace created when arguments are parsed.

taika.events – Basic event managment

This module offers a simple event manager implemented in the class
taika.events.EventManager.

	
events = {'doc-post-read', 'site-post-read'}

	The events that the event manager can register functions to.

	
exception EventNotFound

	Exception raised when an event does not exists.

	
class EventManager

	Register functions to events and passes them arguments and keyword arguments when called.

	
call(self, event, *args, **kwargs)

	Call all the functions registered to event passing *args and *kwargs.

	Parameters

	
	eventstr

	The event which be triggered.

	Raises

	
	EventNotFound

	If the event that is being triggered does not exist.

	
register(self, event, func)

	Register a callable func to an event.

	Parameters

	
	eventstr

	The event to which func will be registered.

	funccallable

	A callable that will recieve arguments and keywords arguments when event is triggered.

	Returns

	
	current_idint

	The ID assigned to the function.

	Raises

	
	EventNotFound

	If the event that is being triggered does not exist.

taika.taika

	
read_conf(conf_path)

	Read the configuration file conf_path. It should be an INI style configuration.

	Parameters

	
	conf_pathstr

	The path to the configuration file to be readed.

	Returns

	
	confconfigparser.ConfigParser

	An instance of a ConfigParser which holds the configuration.

	Raises

	
	SystemExit

	If conf_path is not a file.

	
write_file(document, destination)

	Given a document and a destionation, write document.content in the destination.

	Parameters

	
	documentdict

	A dictionary representing a document. Should have content and url.

	destinationstr or pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	The destination directory where the document will be written.

	Raises

	
	KeyError

	If the document doesn’t have content or url.

	
read_file(path)

	Read path and return the document as a dictionary.

	Parameters

	
	pathstr or pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	A path to a file to be read.

	Returns

	
	documentdict

	A dictionary that holds the information of the document read from path.

History

Unreleased

Added

	taika.ext.markdown extension to process markdown.

Changed

	Changed how taika.ext.layouts accept patterns to decide if a file should be rendered.

	Changed how taika.ext.layouts handle links: simplified function and only absolute links are supported.

v0.6.0 [https://gitlab.com/hectormartinez/taika/tags/v0.6.0] (2019-06-22)

Changed

	Changed how taika.ext.collections receive a pattern for including files

in a collection.

v0.5.3 [https://gitlab.com/hectormartinez/taika/tags/v0.5.3] (2019-06-13)

Fixed

	Test extension were links, which are not supported on Windows. Changed them to

plain files.
* UnicodeError when installing on Windows due to name in pyproject.toml. Removed
problematic characters.
* Layouts extension link was returning a Path instead of an URL, so in Windows it
was not working properly.

Removed

	Root Makefile, docs Makefile and docs make.bat. Now Tox uses another approach

to build documentation.

v0.5.2 [https://gitlab.com/hectormartinez/taika/tags/v0.5.2] (2019-05-11)

Fixed

	taika.ext.rst was printing suffixes.

	Now documents have url which is used to specify the path in the dest directory.

	Modified the extensions for the new document key url.

	rST include directory now works as it should.

Added

	collections extension that groups documents per pattern.

	excerpt extension added.

	rst extension now reads options from config file.

v0.5.1 [https://gitlab.com/hectormartinez/taika/tags/v0.5.1] (2018-04-16)

Changed

	The metadata was saying that the package was compatible with versions of Python
and was wrong. Tags, classifiers and requires added.

	Files are read as bytes, so all the plugins and tests were adapted.

v0.5.0 [https://gitlab.com/hectormartinez/taika/tags/v0.5.0] (2018-04-16)

Added

	Extensions system.

	Two extensions: rst and layouts.

	INI file configuration.

	Main Taika class to orchestrate managers and configuration.

	taika.ext.rst now exits on warnings.

Changed

	CLI parsing now is done by argparse.

Fixed

	Documentation.

v0.4.0 [https://gitlab.com/hectormartinez/taika/tags/v0.4.0] (2018-03-17)

Added

	CLI entry point via taika.

	GitLab folder for issues and merge requests customization.

	Spell checker for the documentation.

Removed

	Certain folders that should be untracked.

	Unused badges on the README.

v0.3.0 [https://gitlab.com/hectormartinez/taika/tags/v0.3.0] (2018-03-15)

Necessary BUMP to wrap my head around the schema.

v0.2.1 [https://gitlab.com/hectormartinez/taika/tags/v0.2.1] (2018-03-15)

Added

	GitLab Continuous Integration.

	Configuration for pytest: now the working directory is the tests folder.

Removed

	Travis Continuous Integration.

v0.2.0 [https://gitlab.com/hectormartinez/taika/tags/v0.2.0] (2018-03-15)

Added

	Added the skeleton for the project.

	Added the first functions and functionality via API.

0.1.X (YYYY-MM-DD)

This versions correspond to older taika versions that I’ve uploaded to PyPi.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 taika	

 	
 	
 taika.cli	

 	
 	
 taika.events	

 	
 	
 taika.ext.collections	

 	
 	
 taika.ext.excerpt	

 	
 	
 taika.ext.layouts	

 	
 	
 taika.ext.markdown	

 	
 	
 taika.ext.rst	

 	
 	
 taika.taika	

Index

 _
 | C
 | D
 | E
 | G
 | I
 | J
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__author__ (in module taika)

 	
 	__email__ (in module taika)

 	__version__ (in module taika)

C

 	
 	call() (EventManager method)

 	collection.patterns (in module taika.ext.collections)

 	
 	collections (in module taika.ext.collections)

 	Collector (class in taika.ext.collections)

 	content (built-in variable)

D

 	
 	default (in module taika.ext.layouts)

 	
 	DocumentNotFound

E

 	
 	EventManager (class in taika.events)

 	EventNotFound

 	events (in module taika.events)

 	
 	excerpt_separator (in module taika.ext.excerpt), [1]

 	extensions (built-in variable)

 	extensions_paths (built-in variable)

G

 	
 	get_excerpt() (in module taika.ext.excerpt)

I

 	
 	import_extensions() (Taika method)

J

 	
 	JinjaRenderer (class in taika.ext.layouts)

L

 	
 	layout (in module taika.ext.layouts)

 	
 	link (in module taika.ext.layouts)

 	link() (in module taika.ext.layouts)

M

 	
 	main() (in module taika.cli)

 	
 	match() (in module taika.ext.collections)

O

 	
 	options (in module taika.ext.layouts)

 	(in module taika.ext.rst)

 	
 	organize() (Collector method)

P

 	
 	parse() (in module taika.ext.markdown)

 	parse_arguments() (in module taika.cli)

 	parse_rst() (in module taika.ext.rst)

 	
 	path (built-in variable)

 	(in module taika.ext.layouts)

 	patterns (in module taika.ext.layouts)

 	process() (Taika method)

R

 	
 	raw_content (built-in variable)

 	read() (Taika method)

 	read_conf() (in module taika.taika)

 	
 	read_file() (in module taika.taika)

 	register() (EventManager method)

 	RelativeLinkNotSupported

 	render_content() (JinjaRenderer method)

S

 	
 	setup() (in module taika.ext.collections)

 	(in module taika.ext.excerpt)

 	(in module taika.ext.layouts)

 	(in module taika.ext.markdown)

 	(in module taika.ext.rst)

 	
 	strict (in module taika.ext.rst)

 	suffixes (in module taika.ext.markdown)

 	(in module taika.ext.rst)

T

 	
 	Taika (class in taika)

 	taika (module)

 	taika.cli (module)

 	taika.events (module)

 	taika.ext.collections (module)

 	
 	taika.ext.excerpt (module)

 	taika.ext.layouts (module)

 	taika.ext.markdown (module)

 	taika.ext.rst (module)

 	taika.taika (module)

U

 	
 	url (built-in variable)

W

 	
 	write() (Taika method)

 	
 	write_file() (in module taika.taika)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Introduction

 		
 Installation

 		
 From PyPI

 		
 From source

 		
 Basic Tutorial

 		
 How-To Guides

 		
 Blogging site

 		
 Create your own extension

 		
 Available events to register to

 		
 Empty extension

 		
 Adding functionality

 		
 Making the extension configurable

 		
 Extensions

 		
 taika.ext.collections – Grouping content

 		
 Event

 		
 Process

 		
 Configuration

 		
 Classes and Functions

 		
 taika.ext.excerpt – Documents excerpts

 		
 Event

 		
 Frontmatter

 		
 Configuration

 		
 Process

 		
 Classes and Functions

 		
 taika.ext.layouts – Jinja layouts

 		
 Event

 		
 Payload

 		
 Frontmatter

 		
 Configuration

 		
 Default filters

 		
 Process

 		
 Classes and Functions

 		
 taika.ext.markdown – Markdown

 		
 Trigger

 		
 Frontmatter

 		
 Process

 		
 Configuration

 		
 Functions

 		
 taika.ext.rst – ReStructuredText

 		
 Trigger

 		
 Frontmatter

 		
 Process

 		
 Configuration

 		
 Functions

 		
 Internals

 		
 Contributing to Taika

 		
 Types of Contributions

 		
 Get Started!

 		
 Merge Request Guidelines

 		
 Tips and tricks with pytest

 		
 Reference

 		
 Document specification

 		
 Configuration file

 		
 taika

 		
 taika.cli

 		
 taika.events – Basic event managment

 		
 taika.taika

 		
 History

 		
 Unreleased

 		
 Added

 		
 Changed

 		
 v0.6.0 (2019-06-22)

 		
 Changed

 		
 v0.5.3 (2019-06-13)

 		
 Fixed

 		
 Removed

 		
 v0.5.2 (2019-05-11)

 		
 Fixed

 		
 Added

 		
 v0.5.1 (2018-04-16)

 		
 Changed

 		
 v0.5.0 (2018-04-16)

 		
 Added

 		
 Changed

 		
 Fixed

 		
 v0.4.0 (2018-03-17)

 		
 Added

 		
 Removed

 		
 v0.3.0 (2018-03-15)

 		
 v0.2.1 (2018-03-15)

 		
 Added

 		
 Removed

 		
 v0.2.0 (2018-03-15)

 		
 Added

 		
 0.1.X (YYYY-MM-DD)

